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In many geophysical situations, fluid is contained in long narrow fractures embedded 
within an impermeable medium of different thermal conductivity ; and there may be 
a uniform vertical temperature gradient imposed upon the system. We show that 
whenever the slot is tiled to the vertical, convection develops in the fluid, even if the 
background temperature increases with height. We then investigate the transport of 
passive material. governed by this flow. The dispersion coefficient of a passive 
contaminant transported by this flow D, = f [R sin2 q5] K~ cot2 #/D, where K and D are 
the thermal and compositional diffusivities, q5 is the angle of tilt and R is a Rayleigh 
number for the slot. 

Using typical values for the physical properties of a water-filled fracture, we show 
that the Earth's geothermal gradient produces a convective flow in a fracture 
through the mechanism above ; this has an associated dispersion coefficient 
D,  - i02-i03D in fractures about a centimetre wide. We show that this shear 
dispersion could transport radioactive material, of half-life lo4 years, tens of metres 
along the fracture within one half-life ; without this dispersion, the material would 
only diffuse a few metres along the fracture within one half-life. 

If there is a background salinity gradient along the slot in addition to the thermal 
gradient, analogous steady flow solutions exist ; if the flow is stable, the salinity may 
either enhance or reduce the steady flow and associated dispersion of passive tracer. 

1. Introduction 
In many geophysical situations, fluid is enclosed in long narrow slots, for example 

in porous layers of sandstone embedded in shale ; in water trapped in narrow fissures 
in the upper crust ; in cooling joints embedded in rock or in tunnels leading to flooded 
underground caves/mines. I t  is of considerable interest to understand the different 
modes of natural convection which may arise in these slots in order to understand the 
transport and rate of spread of passive contaminants. For example, radioactive 
material buried deep in the Earth may be dispersed to the surface through 
convection in a tilted, water-filled fracture much more rapidly than by natural 
diffusion. Such convective transport may also significantly reduce the timescale of 
diagenesis ; material, in solution, may be transported through porous sandstone 
layers convectively and precipitate out of solution as it enters a cooler region, 
thereby changing the structure of the sandstone over a much shorter timescale than 
would be caused by molecular diffusion (Bjorlykke 1989; Davis et al. 1985). 

In this contribution, we describe an important natural convective flow which 
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arises in a tilted, fluid-filled slot embedded in an impermeable medium of different 
thermal conductivity. We show that whenever there is a background vertical 
temperature gradient, a convective flow will develop. The flow arises irrespective of 
whether the temperature increases or decreases with depth. This flow may therefore 
develop even in situations which are stable to  Rayleigh-BBnard convection. 

Davis et al. (1985) have shown that a similar type of flow develops in a permeable 
rock, although in the different geometry of a domed sheet. Our flow is a generalization 
of the flow described by Phillips (1970) and Wunsch (1970), who showed 
independently that a tilted insulating boundary at the edge of a stratified fluid drives 
a flow because the isopycnals a t  the boundary must be normal to the boundary. 
Therefore, the isopycnals are not horizontal and the associated pressure gradient 
drives a flow. I n  the present situation, the boundaries are conducting and so one 
might consider that  the isopycnals within the fluid could be horizontal. However, we 
show below that there is no steady static solution, except when the slot is either 
horizontal or vertical, or if the thermal conductivity of the fluid and surrounding 
medium are the same. We calculate and describe our new flow solutions and 
distinguish the cases in which the background temperature gradient is stabilizing or 
destabilizing. 

Using our flow solution we calculate the Taylor (1953) dispersion coefficient of a 
passive material carried by the flow. We investigate the dependence of the dispersion 
coefficient upon the angle of tilt and also upon the slot Rayleigh number. We then 
apply these results to investigate the transport of a passive tracer through a rock 
fracture. In  particular, we examine the maximum concentration of a radioactively 
decaying material as a function of the distance along the fracture from the source. 

If there is also a salinity gradient along the fracture, then following Chen (1974), 
we show that our present analysis may be readily generalized to describe steady 
double-diffusive flows. 

2. Proof of the existence of flow 
Consider a two-dimensional slot with angle of tilt $ with respect to the horizontal, 

width d and with slot coordinates (y,€J as shown in figure 1. I n  the solid in the far 
field there is a uniform vertical temperature gradient, T, = G. Continuity of 
temperature and normal heat flux at the interface between the solid and the 
incompressible liquid, a t  y = k@ requires 

and T = T  at  y = f c i ,  1 9 +  1 9 -  
where k, and k, represent the thermal conductivity of the liquid and solid. Since the 
isotherms in the solid may curve, it is not immediately clear that those in the liquid 
cannot remain horizontal and a steady no-flow solution develop. However, if this 
were possible, then continuity of temperature from one side of the fracture to the 
other would require T, = Gcos$ along both the lines AB and CD in figure 2,  where 
CD is chosen to be sufficiently far from the slot that  the isotherms through CD are 
horizontal. If the slot is sufficiently long, then the heat flux across AD equals that 
through BC. Therefore, for a steady solution, the heat flux across AB must equal that 
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FIGURE 1. Schematic of fracture geometry showing coordinate system. 
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FIGURE 2. Diagram of a control volume ABCD through which there is no heat flux in steady state. 
The sum of the advective and diffusive fluxes through the boundaries AD and BC are equal, 
requiring the diffusive flux through AB and CD to match. AB and CD are parallel to the walls of 
the fracture. 

across CD. This is not possible if the thermal conductivities of the solid and fluid 
differ and T7 = G cos q5. We conclude that there must be a flow. 

Note that Davis et al. (1985) and subsequently Phillips (1991) have shown 
analytically that no zero-flow solution exists in an analogous problem concerned with 
tilted porous layers embedded in impermeable host rock. Our proof is an alternative, 
physical argument explaining why flow must develop, 

3. The flow solution 
The steady diffusion equation in the solid is satisfied if the isotherms in the solid 

are purely horizontal. In  this case, to satisfy (1) the isotherms in the liquid at the 
sidewalls of the slot are not horizontal and there is a flow. In  a long narrow slot, the 
flow is purely along the slot, u = ~(7). The motion is governed by the vorticity 
equation 

a3u 

a713 
v- = -cxg (3) 
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where v is the kinematic viscosity and we have assumed that the density varies 
linearly with temperature, p = p o ( l  -a(T-T,)). We remark that for parallel flow, (3) 
is in fact the nonlinear vorticity equation. The equation for the conservation of heat 
is 

where T(( ,T,I)  = To+G(sinq5+t9(~) is the temperature in the slot, with To an 
arbitrary constant, G the imposed vertical temperature gradient in the solid and K 

the thermal diffusivity of the fluid. We assume that K ,  a and u are constant. For 
simplicity we define O(0) = 0. The temperature in the solid is given by the continuity 
of normal heat flux, ( l ) ,  and temperature, (2), at 7 = &$id, together with the imposed 
vertical gradient G. If we also impose the no-slip condition on the flow field a t  
rj = &# and introduce the dimensionless variable $ = 2q/d, then the flow solution 
is 

( 5 )  
&(a- 1) Cot# 

u ( i )  = d [ sin 2y rp ( i ; y )  + sinh 2y 1 
with the temperature field satisfying the equation 

where 

k - 1 )  
y(sin 2y + sinh 2 y )  

agGd4 
y4 = - sin2 $, 

6 4 u ~  (7)  

F($ ; y )  = sin y cosh y cos y$ sinh y$ - cos y sinh y sin y$ cosh y$, 

H ( $  ; y )  = sin y cosh y sin y i  cosh y$ + cosy sinh y cosy$ sinh y$, 
(8) 

(9) 

and the constant e is defined as the ratio of the thermal conductivities of the solid and 
liquid, E = k , /k ,  and has a value in the range 1.5-3.0 in a water-saturated rock and 
7-10 in an oil-saturated rock. We can define a slot Rayleigh number as 

agGd4 R=-- 
6 4 u ~  

and this gives the relationship 
y4 = -R sin2$. 

We immediately deduce that four different flow regimes exist depending upon 
whether (i) the temperature in the rock increases (G > 0 and R < 0) or decreases 
(G < 0 and R > 0) with height ; and (ii) whether the conductivity of the solid is greater 
(e: > 1) or smaller (e: < 1)  than that of the liquid. The dimensionless velocity and 
temperature profiles (corresponding to the expressions in the large square brackets 
in (5) and (6)) for each case are shown in figure 3(a-d).These are most easily 
understood by comparing the four different temperature profiles with the dashed 
lines which represent the temperatures in the case in which the isotherms in the 
liquid are horizontal ( E  = 1 ) .  If the temperature solution shown by the solid line is 
greater than that of the dotted line then the fluid is hotter and hence rises ; if the 
temperature is smaller than that given by the dotted line, then the fluid is colder and 
heavy and hence sinks. The flows in figure 3 are shown for y = 1, which corresponds 
to a rather weak temperature gradient; for example, if q5 = in, then we have 
IRI = 2. 
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FIGURE 3. Diagram of ( i )  the velocity profile and (ii) the isotherm structure across the frtcture in 
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= 1, G > 0, E = 0.5, (c) = (-1)%, 
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when the slot is tilted. By symlmetry, there is no mean flow; a mean flow may 
develop when the two walls have different slopes as discussed by Woods (1991), in the 
rather different context of ocean mixing. The flows of figure 3 may be produced in 
the laboratory by applying a temperature gcadient, G,& $ along the walls of the slot 
and a horizontal temperature difference AT across the slot, where AT is given by 

3.1. The stable background temperature distribution 

When G > 0, and hence R < 0, the background temperature increases with depth and 
so the flow is stable. This is essentially because in the slot, hot and hence buoyant 
fluid overlies cold fluid (note we only consider fluids in prhich K -4 v). The flow which 
develops tends to restore the isotherms in the fluid to the horizontal. The case in which 
8 < 1 is a generalization of the flow discussed by Phillips (1970) and Wunsch (1970) 
and represents the situation in which the fluid is a good conductor of heat. The 
solution given as equations (23) and (24) by Phillipais recovered from ( 5 )  and ( 6 )  
when E = 0 ; this limit represents the situation in which the surrounding material is 
insulating and is therefore relevant for convection induced by salinity gradients 
rather than temperature gradients. The case in which E > 1 represents the situation 
in which the fluid is a poor conductor; this situation may arise, for example, if the 
fluid is oil or, in a different situation, the surroynding material is metallic. 

When the background temperature distribution is stable, y (equation (7)) may be 
interpreted as the ratio of the slot width to the lengthscale across which the flow can 
restore the isotherms to the horizontal. Therefore, as the magnitude of the slot 
Rayleigh number, (RI, and hence y = ( - R sin2 $): increase the flow becomes confined 
t o  two independent boundary layers beside each 'wall; we demonstrate this 
phenomenon in figure 4(a) in which flow profiles are shown when y equals 0.5,2.0 and 
5.0. Indeed, in figure 4 ( b ) ,  it may be seen that as y is increased, the temperature 
gradient near the centre of the slot approaches the dashed line (which corresponds to 
the gradient in the surrounding rock where the isotherms are horizontal) and hence 
the isotherms become approximately horizontal except beside each boundary. In 
figure 4(c )  we show that as y increases and the flow becomes more like a boundary 
layer in character, the temperature a t  the upper wall of the slot asymptotes to 0.5, 
consistent with (6); this equals the wall temperature in the no-flow case 8 = 1. 

3.2 The unstable temperature distribution 
When G < 0, R > 0 and so the background temperature field is destabilizing, with 
cold fluid overlying hot fluid. In  this case, the flow tends to further distort the 
isotherms from the horizontal (figure 5 b ) ;  as a result, the flow extends across the 
whole slot (figure 5a) .  As R increases and the lengthscale of the flow becomes smaller 
than the width of the slot, this flow will become unstable. 

In figure 5 ( c )  the temperature at each side of the slot i i  predicted to become infinite 
as Iyl is increased just beyond 1.65. Also, in figure 5( ; )  it may be seen that as IyI = 
I( -R sin2 $)a( increases towards this critical value, the magnitude of the velocity 
diverges. However, we note that figures 5(a)-5(c)  show that the velocity and 
temperature fields are very weak for IyI < 1.5 (i.e. Rsip2$ < 0.5).  

The one-dimensional steady solution breaks down a t  this critical point y z 1.67 
because at this point the Rayleigh number equals that of the lowest steady 
Rayleigh-BBnard convection mode of zero along-slot wavenumber. This follows from 
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consideration of the one-dimensional homogeneous problem described by the 
equations (cf. (3) and (4)) 

a Z u  a3u  ae - 
ata7. a73  37 

-- +v- = -ag-sin#, 

ae a v  
at av2 
-+Gsinqh = K - - .  

If we seek non-dimensional modes of the form 

u(7j) = exp (ot) ( A  sin ( A $ )  + B  cos ( h i )  + C cosh ( h i )  + D  sinh ( h i ) ) ,  (14) 

such that the velocity and heat flux vanish on either boundary (u = ufiq = O), then 
we may add this homogeneous solution to the steacly forced solution given by ( 5 )  
and (6). Expression (14) satisfies these boundary conditions if cos (2h) cosh (2h) = 1. 
The lowest non-trivial eigenvalue satisfying this condition is 2h x 4.73. Furthermore, 
when 4Rsin2# = h4, there is a steady (w = 0) homogeneous solution of the form 
(14). The steady forced solution we have found, to the original problem ((5) 
and (6)) coincides with this homogeneous solutien whenever cos (2h) cosh (2h) = 1 
and 4Rsin2g5 = h4. Therefore the steady solution first becomes singular when 
R sin2# = 7.4 (i.e. 171 = 1.67). 

The condition Rsin2# = 7.4 (i.e. 171 = 1.67) represents an upper bound on the 
stability threshold, since the flow may become unstable to two-dimensional 
perturbations a t  slightly lower Rayleigh numbers, although calculation of this 
stability threshold is beyond the scope of the present work. 

4. Dispersion of passive tracer by the flow 
Phillips (1970) calculated the convective and diffusive mass fluxes along a slot 

whose sidewalls are insulated. His calculation is useful, for example, in calculating 
the mass flux of salt along a water-filled fissure which extends from the side of a lake, 
in the case in which the flow along the fissure is driven by the salt gradient. However, 
in many situations flow may be driven by a thermal gradient, for example the 
geothermal gradient below the surface of the earth (Davis et al. 1985), yet it may be 
of interest to calculate the passive transport of a second component by the flow. 
Using the new class of thermally driven flows, which we have described in 93, we now 
calculate the passive transport of material along the slot. This is of interest for 
example in understanding how rapidly dissolved chemicals or buried (radioactive) 
waste products, in solution, may be dispersed along a water-saturated fracture, by 
the flow driven by the geothermal temperature gradient. Chemical transport is of 
interest when the passive chemical reacts with the rock; if the convective transport 
of the chemical exceeds that of molecular diffusion, then the reaction front may 
extend far ahead of that predicted by molecular diffusion. 

As passive material of concentration C ( v , [ )  is dispersed by the flow along a narrow 
fracture, it may eventually reach a quasi-steady, leading-order balance between 
along-slope advection and cross-slope diffusion (Taylor 1953). In general, the mean 
concentration of passive material, c, which is defined to be 
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is governed by the relation 

In (16), the effective diffusivity Deff is the sum of the molecular diffusivity, D, and 
the dispersion coefficient, D,, resulting from the shear flow, and C = 6+ C‘ where 

I n  (17), A is found using the condition that aC/Q = 0 at 7 = +@, following the 
method of Taylor (1953). Using the flow solution (5) together with (16) and (17) one 

K2 

T - D  

may show that 
D - - ( ( ~ - l ) ~ ~ o t ~ $ E ( y ) ,  

where 

with A(y) = 5[2sin2ycosh2y-2~0~2ysinh2y+sinh4y-sin4y] (20) 
B(y) = 4y(6 sin 2y sinh 2y+ cosh 4y- cos 4y). (21) and 

It follows from (lob) that as 4 + 0  or in, for fixed Rayleigh number R, or as y+O, 
the flow becomes very weak; hence, DT+O and the molecular diffusion becomes 
dominant. In  fact, when R is small, corresponding to  a weak forcing, it may be shown 
that (18) asymptotes to the expression 

3 2 ~ ~ (  1 - ~ ) ~ y ’  cot2 4 - 8 ~ ~ (  1 - E ) ~ R ~  sin2 (24) 
28350 28350 

- D, z 

The dependence of the dispersion coefficient D, upon K2/D may be readily understood 
by noting that in the present natural convective flow, given by (5), u N Ky/d, but 
Taylor (1953) has shown that the shear dispersion, D,, generally scales as d2u2/D. 
I n  the limit of weak forcing, IRI Q 1,  expression (22) suggests that the dispersion 
coefficient is independent of the direction of the temperature gradient, G .  This is 
essentially because in this case the flow in the slot is linearly proportional to G 
(equation (5)). Also note that (22) suggests that D, is symmetric about q5 = in. 

In  figure 6 ( a )  we have plotted cot2 $E(y), where E(y)  is given by (19), as a function 
of IRI (G > 0, stable, dotted line; G < 0, unstable, solid line) in the case $ = in. This 
represents the dimensionless dispersion coefficient for the flow, as given by (18). 
From the figure, it may be seen that when there is a stable temperature gradient, if 
(RI > 3 then E(y)>  0.01 and that E(y) +0.5 as y+ 00. We also note that in an 
unstable temperature field, the dispersion coefficient is comparable to, although 
somewhat larger than, that for the stable flow if (RI < 10. This is a result of the fact 
that in the unstable temperature field, the flow extends right across the slot. From 
5 3, we expect the flow to become unstable when the Rayleigh number is of order 10. 
However, for larger Rayleigh numbers, when the flow does become unstable and two- 
dimensional, the along-slot transport will be smaller than the steady flow estimate. 

For the case of a stable background temperature field, we have investigated the 
dependence of the dispersion coefficient upon the angle of tilt. In  figure 6 ( b )  we show 
how cot24E(y) varies with slot angle for a range of magnitudes of the Rayleigh 
number. For each slot angle, the dimensionless dispersion coefficient asymptotes to 
0.5 cot2$ as IRI + co. Therefore, the maximum dispersion coefficient for a given 
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Angle of tilt (deg.) 

FIGURE 6. (a) The dependence of the dispersion coefficient, D,, upon the magnitude of Rayleigh 
number IRI for G > 0 (solid, R < 0) and G < 0 (dotted, R > 0) background temperature field; here 
the slot has angle of tilt in. (b)  The dependence of the dispersion coefficient upon the slot angle of 
tilt for JRI = 1O000, 1000, 100, 10, 1. 

Rayleigh number occurs a t  smaller and smaller slot angles as the magnitude of the 
Rayleigh number increases. 

This result is particularly interesting if one considers a random network of water- 
filled fractures of different angles of tilt; if a passive tracer is released from a point 
then for weak forcing (small IRI), the tracer tends to travel at  quite large angles to 
the horizontal and will be dispersed over a wide range of angles; in contrast, at much 
larger forcings, the tracer will tend to travel most rapidly at shallower angles to the 
horizontal. Therefore, with a larger thermal forcing, a tracer will tend to be dispersed 
through a random array of fractures over a wider horizontal area. 

In figure 7,  we illustrate this angular dependence of the dispersal with a plot of 
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FIQURE 7 .  Hypothetical surfaces of a fixed concentration of contaminant a t  unit time after release 
from a point source into a medium containing an array of fractures originaFing a t  the source an$ 
orientated ?t different angles of inclination. Curves, y(r), defined as D ( z ,  y) = ((D,(B) cos B)r ,  
(DT(e) sin O)?) ,  are given for D, = lOD, lOOD and 10000. Note the different scales on the horizontal 
and vertical axes, which implies that the mean horizontal dispersal distance is very large compared 
t o  the mean vertical dispersal distance. 

( (DT cos 0);, (D, sin 0);).  Curves are given for several values of the Rayleigh number, R, 
emphasizing the change in angular dependence of D, with R. These curves represent 
hypothetical surfaces of fixed concentration of contaminant at unit time after release 
from a point source into a medium containing an array of fractures orientated a t  
different angles. This figure identifies the strong angular dependence of the 
dispersion; it is remarkable that material will be dispersed most rapidly along 
inclined paths. As a result, material could first surface a t  some radial distance from 
the source, before it appears on the surface a t  points close to  the source. This effect 
is particularly pronounced at higher Rayleigh numbers. 

We now consider a specific example of dispersion along a water-filled fracture. 

4.1. Dispersion in a rock fracture 
For many passive tracers, D / K  - therefore, (18) and figure 6 imply that, for 
y 2 1, the dispersion of material along the slot far exceeds the transport by molecular 
diffusion. For example, in a water-filled fracture in the upper surface of the earth, 
v - 0.05 cm2/s, K - 0.001 cm2/s, D - 10-5cm2/s, G = -2.5 x K/cm, e - 1.5-3.0 
and a - 0.001. Equation (7) thus implies that R - 10-'d4 for a fracture of tilt angle 
4. Also, in such a water-filled rock fracture, ~ ~ ( 1  - - E ) ~ / D  - 1. Therefore, for fractures 
in which d 4 1 cm, y < 1 and the asymptotic expression (22) is valid; in this case 
D, - daD sin2 295 6 D and is therefore negligible. However, in wider fractures, in 
which d > 1 cm and R - 0(1), D, is given by (18). From figure 6 ( a )  we deduce that 
for R - O(1) and 4 N in, 2 E ( y )  2 lop3 and so 

10-3 G D, G 10-2 (23) 

which is 2-3 orders of magnitude greater than the molecular diffusion, D. Consideration 
of this natural convective flow is therefore crucial in determining the rate of spread 
of passive contaminants or tracer in wide fractures. 
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4.2. Dispersion of a radioactively decaying contaminant 

We now consider how rapidly a radioactively decaying material, with radioactive 
concentration C per unit mass, is dispersed. In a narrow fracture the lengthscale and 
hence timescale of adjustment to the steady dispersive situation will be short 
compared to the half-life of a radioactively decaying material. Therefore, as the 
radioactive fluid moves along the slot, i t  will decay according to a conservation 

where h is the decay rate of the material. In this case, the concentration of 
radioactive material along the slot, in the region 6 > 0, originating from a decaying 
source of strength C, a t  t = 0 in the region 6 < 0, has the form 

- 
C(5, t )  = E,, exp ( -At )  erfc 

Therefore if the radioactive material travels along the fracture from 6 = 0 t o  the 
surface a t  = H ,  then the concentration reaching the surface a t  time 7 will be 

We deduce that the concentration of the radioactive material a t  a distance H from 
the source will only be negligible if H 2  > 4(D+DT)/h .  If 9.9 D ,  then the natural 
dispersion transports radioactive material a factor (DT/D)r further than molecular 
diffusion before the material has decayed radioactively. 

For example, in figure 8 (a), we show how the concentration of the material 100 m 
along the fracture varies with time. Each curve corresponds to a different value of 
DT/D,  the enhanced dispersion coefficient. We assume the material has a half-life of 
approximately lo4 years ( A  = lo-"). It may be seen that after a few half-lives the 
material has decayed radioactively. For larger dispersion coefficients, the material 
travels further from the source before it decays and so the maximum concentration 
attained 100m from the source is larger. Such a flow may therefore have an 
important role in pollutant transport. In  figure 8 ( b ) ,  we show the concentration of 
tracer as a function of time at three different positions along the fracture (1,  10 and 
100m) with D, = 1000. Although the decay time is independent of distance, the 
magnitude of the contaminant concentration and the time during which any point 
along the fracture is exposed to  such concentrations decreases quite rapidly with 
distance. 

From figures 8 ( a )  and 8 ( b )  we deduce that an increase in the dispersion coefficient 
can cause greater concentrations and also greater time of exposure to such 
concentrations at positions further from the source. I n  a real situation, there will be 
a complex network of fractures causing dispersal patterns of the form of figure 7 
(assuming fracture widths are similar at all angles). As a result, radioactive 
contaminant may only manage to surface a t  points whose lateral distance from the 
source is of magnitude comparable to  the depth of the buried contaminant ; it may 
decay before reaching the surface if it travels along fractures with other angles of 
inclination. 



72 

0.8 1 

A .  W. Woods and S. J .  Linz 

7 8 9 10 1 1  12 
log (Time) (s) 

5 6 1 8 9 10 11 12 
log (Time) (s) 

FIQIJRE 8. (a) The concentration of radioactive material as a function of time 100 m from a source. 
The material disperses along a fracture of inclination an and with dispersal coefficients D,/D = 10, 
100 and 1000 and 10000. ( b )  The concentration of radioactive material as a function of time 1 m, 
10 m and 100 m along the fracture, of inclination in, with D,/D = 100. 

5. Double-diffusive effects 
Our steady-state theory may be extended to the double-diffusive situation, in 

which there is also a background salinity gradient along the slot, S,,sinq5 (Chen 
1974). However, we note cautiously that the steady solutions may now become 
unstable to double-diffusive instability. We include an additional equation for the 
conservation of salt, S ,  in the slot, 

as as a 2 s  

at ag a72 
-+U- = K , - ,  

where K, is the coefficient of diffusion of salinity and S the salt concentration. 
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In  steady state, we may combine ( 2 7 )  with ( 3 )  and (4), to obtain the generalized 
steady solution. It may be shown that the parameter y ,  introduced in ( l o b ) ,  is 
modified to new the expression 

(28)  y: = - R sin2 q5( 1 - K S ~ ,  P / K ~  G a ) ,  

where K, is the diffusivity of the salt and Pp0 = i3p/8S. Furthermore, using this new 
scaling, yd,  for the cross-slot variation of the forced flow solutions, it may be shown 
that the velocity field is of the form (5) but now with a pre-multiplying factor 
[ 8 ~ ( € -  1) + ~ , ( ~ # , , / a G ) ) ] / d .  The salinity satisfies an equation of the form (6), with 
the term proportional to G ( s -  1) replaced by an equivalent term proportional to 
-Soz. This is an extension of the work of Chen (1974), who considered the case of zero 
flux of both heat and salt at each bounding wall, whereas we have admitted solutions 
with a net heat flux at each wall. We also allow both statically stable and unstable 
salinity and temperature fields. 

We see that the salinity can act in parallel or in opposition to the temperature field, 
and that the direction of flow is determined by the sign of [ K ( E - ~ ) ~ G - K ~ P S ~ ~ ] .  A 
zero-flow steady solution exists if the salinity and temperature perturbations to the 
density exactly balance at the boundary; however, this solution may become 
unstable to double-diffusive instability owing to the difference in the diffusion 
coefficients of salt and heat. 

It readily follows from the above discussion and 54 that for a steady stable double- 
diffusive flow, the Taylor dispersion coefficient has value 

3 2 ( ~ ( ~ -  1)  + K , ( P S , , / ~ G ) ) ~ ~ ~  cot2 q5 
28350 

D, = (29) 

Therefore double-diffusive effects may either enhance or reduce the net dispersion of 
tracer. 

However, we note that this double-diffusive system may be unstable. It follows 
from our earlier analysis that when yd ,  as defined in (28), takes the critical value - 1.67, the forced flow coincides with the lowest steady Rayleigh-BBnard convective 
mode of zero along-slot wavelength, and thus becomes singular, as in the case of one- 
component convection. However, the system also admits double-diffusive in- 
stabilities due to the difference in the rate of diffusion of solute and temperature. In  
the present problem of fixed-flux boundary conditions the full-diffusive stability 
analysis is non-trivial, and would form an interesting extension of the present 
problem. Nonetheless, our expression (29)  for the dispersion of tracer represents an 
upper bound. 

6.  Conclusions 
In  summary, we have shown that a natural convective flow is always produced in 

a tilted slot when there is an imposed, vertical temperature gradient and a difference 
in the thermal conductivity between the fluid filled layer and the surrounding solid. 
The flow arises even if the density field associated with the temperature gradient is 
stable . 

The shear dispersion associated with this flow scales as 

D, = € 4 ~ ~  sin2 2q5( 1 - s ) ~  R2/2835D, (30)  
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when the slot Rayleigh number Ill1 Q 1,  but for > 1 the dispersion coefficient may 
be of magnitude D, - O(K'( 1 - - E ) ~ ) / D .  In  general this is much greater than the 
molecular diffusion coefficient D .  For each angle of tilt, the dispersion coefficient 
asymptotes to  a fixed value as the Rayleigh number is increased, and this value 
decreases with angle of tilt. As the Rayleigh number increases, the angle a t  which the 
dispersion coefficient is a maximum decreases. Thus in an array of fractures oriented 
a t  different angles, passive material will tend to  be dispersed further laterally as the 
Rayleigh number is increased (figure 7) .  

We have shown that in a water-filled fracture near the surface of the earth, the 
dispersion coefficient, D,, may be 2-3 orders of magnitude larger than the 
molecular diffusion coefficient if the rock fracture is wider than about 1 cm. We have 
shown that this dispersion may enable contaminants, such as buried radioactive 
waste, to travel one-two orders of magnitude further along the fracture before 
decaying radioactively. Although the real situation is morc complex, in some 
situations, this process may reduce the surfacing time of radioactive material below 
its half-life. 

Double-diffusive effects due to  the presence of a salinity gradient along the slot 
modify the steady flow and can lead to an increase or decrease in the net flow and 
dispersion of contaminant along the slot ; however, in this case double-diffusive 
instabilities may develop leading t o  a change in the flow and a reduction in the 
transport. 

In  conclusion, we mention that similar processes may also arise in water-saturated 
porous layers in which case the flow may be modified by slow diagenetic reactions 
(Davis et al. 1985; Phillips 1991 ; Linz & Woods 1992). 
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